If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2/7u^2+6=0
Domain of the equation: 7u^2!=0We multiply all the terms by the denominator
u^2!=0/7
u^2!=√0
u!=0
u∈R
6*7u^2-2=0
Wy multiply elements
42u^2-2=0
a = 42; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·42·(-2)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*42}=\frac{0-4\sqrt{21}}{84} =-\frac{4\sqrt{21}}{84} =-\frac{\sqrt{21}}{21} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*42}=\frac{0+4\sqrt{21}}{84} =\frac{4\sqrt{21}}{84} =\frac{\sqrt{21}}{21} $
| Y=-22.5(x-10)+75.5 | | 46=3w-16 | | 2/5*u=30 | | 6x+2(9.25)=86 | | 9-3*(1-y)=4y-2+y | | 36^4^n-^3=216 | | 36^4^n-3=216 | | 36^4n-^3=216 | | 9-3(1-y)=4y-2+y | | 36^4n^-^3=216 | | 8=14-3y | | 36^4n^-3=216 | | 5(2x-7)=80 | | -3+5+6g=11-3 | | 19x-8=14x-13 | | 17x+13(26x)=355 | | 2x+1.5=9 | | 6(x+6)-3x=14 | | 66=16.5+7.5*x | | 7/5w-3=-4/3w-5/3 | | 2x÷5=2÷7 | | -3u-5/2=3/4u-4/3 | | x/7.85=1 | | 7.85x=1 | | 7/2v-2/3=-6v-1/2 | | 5x^2+3x+30=0 | | 3x+x2=180 | | 5x-43+4x-11=90 | | 2t-8=(t+2) | | 90+3x(2)=180 | | -6-6+5x=-15 | | 7×+4y=10 |